This paper is concerned with a class of Nicholson's blowflies models with multiple time-varying delays, which is defined on the nonnegative function space. Under appropriate conditions, we establish some criteria to ensure that all solutions of this model converge globally exponentially to a positive almost periodic solution. Moreover, we give an example with numerical simulations to illustrate our main results.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-2-6, author = {Bingwen Liu}, title = {New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model}, journal = {Annales Polonici Mathematici}, volume = {113}, year = {2015}, pages = {191-208}, zbl = {1327.34130}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-2-6} }
Bingwen Liu. New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model. Annales Polonici Mathematici, Tome 113 (2015) pp. 191-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-2-6/