Hölder regularity for solutions to complex Monge-Ampère equations
Mohamad Charabati
Annales Polonici Mathematici, Tome 113 (2015), p. 109-127 / Harvested from The Polish Digital Mathematics Library

We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is 1,1 and the right hand side has a density in Lp(Ω) for some p > 1, and prove the Hölder continuity of the solution.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286549
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-2-1,
     author = {Mohamad Charabati},
     title = {H\"older regularity for solutions to complex Monge-Amp\`ere equations},
     journal = {Annales Polonici Mathematici},
     volume = {113},
     year = {2015},
     pages = {109-127},
     zbl = {1330.32012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-2-1}
}
Mohamad Charabati. Hölder regularity for solutions to complex Monge-Ampère equations. Annales Polonici Mathematici, Tome 113 (2015) pp. 109-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap113-2-1/