An embedding relation for bounded mean oscillation on rectangles
Benoît F. Sehba
Annales Polonici Mathematici, Tome 111 (2014), p. 287-299 / Harvested from The Polish Digital Mathematics Library

In the two-parameter setting, we say a function belongs to the mean little BMO if its mean over any interval and with respect to any of the two variables has uniformly bounded mean oscillation. This space has been recently introduced by S. Pott and the present author in relation to the multiplier algebra of the product BMO of Chang-Fefferman. We prove that the Cotlar-Sadosky space bmo(N) of functions of bounded mean oscillation is a strict subspace of the mean little BMO.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286430
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-6,
     author = {Beno\^\i t F. Sehba},
     title = {An embedding relation for bounded mean oscillation on rectangles},
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {287-299},
     zbl = {1309.42031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-6}
}
Benoît F. Sehba. An embedding relation for bounded mean oscillation on rectangles. Annales Polonici Mathematici, Tome 111 (2014) pp. 287-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-6/