We discuss several additional properties a power linear Keller map may have. The Structural Conjecture of Drużkowski (1983) asserts that certain two such properties are equivalent, but we show that one of them is stronger than the other. We even show that the property of linear triangularizability is strictly in between. Furthermore, we give some positive results for small dimensions and small Jacobian ranks.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-4, author = {Michiel de Bondt and Dan Yan}, title = {Triangularization properties of power linear maps and the Structural Conjecture}, journal = {Annales Polonici Mathematici}, volume = {111}, year = {2014}, pages = {247-266}, zbl = {1309.14052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-4} }
Michiel de Bondt; Dan Yan. Triangularization properties of power linear maps and the Structural Conjecture. Annales Polonici Mathematici, Tome 111 (2014) pp. 247-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-4/