Sum of squares and the Łojasiewicz exponent at infinity
Krzysztof Kurdyka ; Beata Osińska-Ulrych ; Grzegorz Skalski ; Stanisław Spodzieja
Annales Polonici Mathematici, Tome 111 (2014), p. 223-237 / Harvested from The Polish Digital Mathematics Library

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h(x)==hr(x)=0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f|V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h(x)=i=1rh²i(x)σi(x), where σi are sums of squares of polynomials of degree at most p, such that f(x) + h(x) > 0 for x ∈ ℝⁿ. We give an estimate for p in terms of: the degree of f, the degrees of hi and the Łojasiewicz exponent at infinity of f|V. We prove a version of the above result for polynomials positive on semialgebraic sets. We also obtain a nonnegative extension of some odd power of f which is nonnegative on an irreducible algebraic set.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286262
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-2,
     author = {Krzysztof Kurdyka and Beata Osi\'nska-Ulrych and Grzegorz Skalski and Stanis\l aw Spodzieja},
     title = {Sum of squares and the \L ojasiewicz exponent at infinity},
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {223-237},
     zbl = {1315.14073},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-2}
}
Krzysztof Kurdyka; Beata Osińska-Ulrych; Grzegorz Skalski; Stanisław Spodzieja. Sum of squares and the Łojasiewicz exponent at infinity. Annales Polonici Mathematici, Tome 111 (2014) pp. 223-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-3-2/