The purpose of this paper is twofold. The first is to weaken or omit the condition for i ≠ j in some previous uniqueness theorems for meromorphic mappings. The second is to decrease the number q of hyperplanes such that f(z) = g(z) on , where f,g are meromorphic mappings.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-2-4, author = {Feng L\"u}, title = {On the uniqueness problem for meromorphic mappings with truncated multiplicities}, journal = {Annales Polonici Mathematici}, volume = {111}, year = {2014}, pages = {165-179}, zbl = {1308.32019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-2-4} }
Feng Lü. On the uniqueness problem for meromorphic mappings with truncated multiplicities. Annales Polonici Mathematici, Tome 111 (2014) pp. 165-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-2-4/