The purpose of this paper is twofold. The first is to weaken or omit the condition for i ≠ j in some previous uniqueness theorems for meromorphic mappings. The second is to decrease the number q of hyperplanes such that f(z) = g(z) on , where f,g are meromorphic mappings.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-2-4,
author = {Feng L\"u},
title = {On the uniqueness problem for meromorphic mappings with truncated multiplicities},
journal = {Annales Polonici Mathematici},
volume = {111},
year = {2014},
pages = {165-179},
zbl = {1308.32019},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-2-4}
}
Feng Lü. On the uniqueness problem for meromorphic mappings with truncated multiplicities. Annales Polonici Mathematici, Tome 111 (2014) pp. 165-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-2-4/