We prove that if M is a complete noncompact Riemannian manifold whose Ricci tensor is cyclic parallel and whose scalar curvature is nonpositive, then M is Einstein, provided the Sobolev constant is positive and an integral inequality is satisfied.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-1-8,
author = {Yi Hua Deng},
title = {Rigidity of noncompact manifolds with cyclic parallel Ricci curvature},
journal = {Annales Polonici Mathematici},
volume = {111},
year = {2014},
pages = {101-108},
zbl = {1310.53037},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-1-8}
}
Yi Hua Deng. Rigidity of noncompact manifolds with cyclic parallel Ricci curvature. Annales Polonici Mathematici, Tome 111 (2014) pp. 101-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-1-8/