Complete pluripolar graphs in N
Nguyen Quang Dieu ; Phung Van Manh
Annales Polonici Mathematici, Tome 111 (2014), p. 85-100 / Harvested from The Polish Digital Mathematics Library

Let F be the Cartesian product of N closed sets in ℂ. We prove that there exists a function g which is continuous on F and holomorphic on the interior of F such that Γg(F):=(z,g(z)):zF is complete pluripolar in N+1. Using this result, we show that if D is an analytic polyhedron then there exists a bounded holomorphic function g such that Γg(D) is complete pluripolar in N+1. These results are high-dimensional analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann. Polon. Math. 84 (2004), 75-86] and Levenberg, Martin and Poletsky [Analytic disks and pluripolar sets, Indiana Univ. Math. J. 41 (1992), 515-532].

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280999
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-1-7,
     author = {Nguyen Quang Dieu and Phung Van Manh},
     title = {Complete pluripolar graphs in $$\mathbb{C}$^N$
            },
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {85-100},
     zbl = {1329.32019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-1-7}
}
Nguyen Quang Dieu; Phung Van Manh. Complete pluripolar graphs in $ℂ^N$
            . Annales Polonici Mathematici, Tome 111 (2014) pp. 85-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap112-1-7/