Periodic solutions for first order neutral functional differential equations with multiple deviating arguments
Lequn Peng ; Lijuan Wang
Annales Polonici Mathematici, Tome 111 (2014), p. 197-213 / Harvested from The Polish Digital Mathematics Library

We consider first order neutral functional differential equations with multiple deviating arguments of the form (x(t)+Bx(t-δ))'=g(t,x(t))+k=1ngk(t,x(t-τk(t)))+p(t). By using coincidence degree theory, we establish some sufficient conditions on the existence and uniqueness of periodic solutions for the above equation. Moreover, two examples are given to illustrate the effectiveness of our results.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280438
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-2-7,
     author = {Lequn Peng and Lijuan Wang},
     title = {Periodic solutions for first order neutral functional differential equations with multiple deviating arguments},
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {197-213},
     zbl = {1304.34120},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-2-7}
}
Lequn Peng; Lijuan Wang. Periodic solutions for first order neutral functional differential equations with multiple deviating arguments. Annales Polonici Mathematici, Tome 111 (2014) pp. 197-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-2-7/