Solutions for the p-order Feigenbaum’s functional equation h(g(x))=gp(h(x))
Min Zhang ; Jianguo Si
Annales Polonici Mathematici, Tome 111 (2014), p. 183-195 / Harvested from The Polish Digital Mathematics Library

This work deals with Feigenbaum’s functional equation ⎧ h(g(x))=gp(h(x)), ⎨ ⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1] where p ≥ 2 is an integer, gp is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280869
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-2-6,
     author = {Min Zhang and Jianguo Si},
     title = {Solutions for the p-order Feigenbaum's functional equation $h(g(x)) = g^{p}(h(x))$
            },
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {183-195},
     zbl = {1303.39013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-2-6}
}
Min Zhang; Jianguo Si. Solutions for the p-order Feigenbaum’s functional equation $h(g(x)) = g^{p}(h(x))$
            . Annales Polonici Mathematici, Tome 111 (2014) pp. 183-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-2-6/