Let V ⊂ Z be two subspaces of a Banach space X. We define the set of generalized projections by . Now let X = c₀ or , Z:= kerf for some f ∈ X* and (n < m). The main goal of this paper is to discuss existence, uniqueness and strong uniqueness of a minimal generalized projection in this case. Also formulas for the relative generalized projection constant and the strong uniqueness constant will be given (cf. J. Blatter and E. W. Cheney [Ann. Mat. Pura Appl. 101 (1974), 215-227] and G. Lewicki and A. Micek [J. Approx. Theory 162 (2010), 2278-2289] where the case of projections has been considered). We discuss both the real and complex cases.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-1-5, author = {Beata Der\k egowska and Barbara Lewandowska}, title = {A note on generalized projections in c0}, journal = {Annales Polonici Mathematici}, volume = {111}, year = {2014}, pages = {59-72}, zbl = {1311.47015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-1-5} }
Beata Deręgowska; Barbara Lewandowska. A note on generalized projections in c₀. Annales Polonici Mathematici, Tome 111 (2014) pp. 59-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-1-5/