Hyperconvexity of non-smooth pseudoconvex domains
Xu Wang
Annales Polonici Mathematici, Tome 111 (2014), p. 1-11 / Harvested from The Polish Digital Mathematics Library

We show that a bounded pseudoconvex domain D ⊂ ℂⁿ is hyperconvex if its boundary ∂D can be written locally as a complex continuous family of log-Lipschitz curves. We also prove that the graph of a holomorphic motion of a bounded regular domain Ω ⊂ ℂ is hyperconvex provided every component of ∂Ω contains at least two points. Furthermore, we show that hyperconvexity is a Hölder-homeomorphic invariant for planar domains.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280764
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-1-1,
     author = {Xu Wang},
     title = {Hyperconvexity of non-smooth pseudoconvex domains},
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {1-11},
     zbl = {1297.32019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-1-1}
}
Xu Wang. Hyperconvexity of non-smooth pseudoconvex domains. Annales Polonici Mathematici, Tome 111 (2014) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap111-1-1/