We give an upper estimate of Petrenko's deviation for a meromorphic function of finite lower order in terms of Valiron's defect and the number p(∞,f) of separated maximum modulus points of the function. We also present examples showing that this estimate is sharp.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-6,
author = {Ewa Ciechanowicz and Ivan I. Marchenko},
title = {A note on the separated maximum modulus points of meromorphic functions},
journal = {Annales Polonici Mathematici},
volume = {111},
year = {2014},
pages = {295-310},
zbl = {1295.30069},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-6}
}
Ewa Ciechanowicz; Ivan I. Marchenko. A note on the separated maximum modulus points of meromorphic functions. Annales Polonici Mathematici, Tome 111 (2014) pp. 295-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-6/