We give an upper estimate of Petrenko's deviation for a meromorphic function of finite lower order in terms of Valiron's defect and the number p(∞,f) of separated maximum modulus points of the function. We also present examples showing that this estimate is sharp.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-6, author = {Ewa Ciechanowicz and Ivan I. Marchenko}, title = {A note on the separated maximum modulus points of meromorphic functions}, journal = {Annales Polonici Mathematici}, volume = {111}, year = {2014}, pages = {295-310}, zbl = {1295.30069}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-6} }
Ewa Ciechanowicz; Ivan I. Marchenko. A note on the separated maximum modulus points of meromorphic functions. Annales Polonici Mathematici, Tome 111 (2014) pp. 295-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-6/