Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay
Mouffak Benchohra ; Mohamed Hellal
Annales Polonici Mathematici, Tome 111 (2014), p. 259-281 / Harvested from The Polish Digital Mathematics Library

We investigate the existence and uniqueness of solutions of hyperbolic fractional order differential equations with state-dependent delay by using a nonlinear alternative of Leray-Schauder type due to Frigon and Granas for contraction maps on Fréchet spaces.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280374
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-4,
     author = {Mouffak Benchohra and Mohamed Hellal},
     title = {Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay},
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {259-281},
     zbl = {1301.35197},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-4}
}
Mouffak Benchohra; Mohamed Hellal. Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay. Annales Polonici Mathematici, Tome 111 (2014) pp. 259-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-3-4/