On existence of a unique generalized solution to systems of elliptic PDEs at resonance
Tiantian Qiao ; Weiguo Li ; Kai Liu ; Boying Wu
Annales Polonici Mathematici, Tome 111 (2014), p. 25-31 / Harvested from The Polish Digital Mathematics Library

The Dirichlet boundary value problem for systems of elliptic partial differential equations at resonance is studied. The existence of a unique generalized solution is proved using a new min-max principle and a global inversion theorem.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280916
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3,
     author = {Tiantian Qiao and Weiguo Li and Kai Liu and Boying Wu},
     title = {On existence of a unique generalized solution to systems of elliptic PDEs at resonance},
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {25-31},
     zbl = {1292.35120},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3}
}
Tiantian Qiao; Weiguo Li; Kai Liu; Boying Wu. On existence of a unique generalized solution to systems of elliptic PDEs at resonance. Annales Polonici Mathematici, Tome 111 (2014) pp. 25-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3/