The Dirichlet boundary value problem for systems of elliptic partial differential equations at resonance is studied. The existence of a unique generalized solution is proved using a new min-max principle and a global inversion theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3, author = {Tiantian Qiao and Weiguo Li and Kai Liu and Boying Wu}, title = {On existence of a unique generalized solution to systems of elliptic PDEs at resonance}, journal = {Annales Polonici Mathematici}, volume = {111}, year = {2014}, pages = {25-31}, zbl = {1292.35120}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3} }
Tiantian Qiao; Weiguo Li; Kai Liu; Boying Wu. On existence of a unique generalized solution to systems of elliptic PDEs at resonance. Annales Polonici Mathematici, Tome 111 (2014) pp. 25-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3/