The Dirichlet boundary value problem for systems of elliptic partial differential equations at resonance is studied. The existence of a unique generalized solution is proved using a new min-max principle and a global inversion theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3,
author = {Tiantian Qiao and Weiguo Li and Kai Liu and Boying Wu},
title = {On existence of a unique generalized solution to systems of elliptic PDEs at resonance},
journal = {Annales Polonici Mathematici},
volume = {111},
year = {2014},
pages = {25-31},
zbl = {1292.35120},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3}
}
Tiantian Qiao; Weiguo Li; Kai Liu; Boying Wu. On existence of a unique generalized solution to systems of elliptic PDEs at resonance. Annales Polonici Mathematici, Tome 111 (2014) pp. 25-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-3/