Existence of mild solutions for fractional evolution equations with nonlocal initial conditions
Pengyu Chen ; Yongxiang Li ; Qiang Li
Annales Polonici Mathematici, Tome 111 (2014), p. 13-24 / Harvested from The Polish Digital Mathematics Library

This paper discusses the existence of mild solutions for a class of semilinear fractional evolution equations with nonlocal initial conditions in an arbitrary Banach space. We assume that the linear part generates an equicontinuous semigroup, and the nonlinear part satisfies noncompactness measure conditions and appropriate growth conditions. An example to illustrate the applications of the abstract result is also given.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:280652
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-2,
     author = {Pengyu Chen and Yongxiang Li and Qiang Li},
     title = {Existence of mild solutions for fractional evolution equations with nonlocal initial conditions},
     journal = {Annales Polonici Mathematici},
     volume = {111},
     year = {2014},
     pages = {13-24},
     zbl = {1293.34009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-2}
}
Pengyu Chen; Yongxiang Li; Qiang Li. Existence of mild solutions for fractional evolution equations with nonlocal initial conditions. Annales Polonici Mathematici, Tome 111 (2014) pp. 13-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-2/