We study the existence of positive solutions to a class of singular nonlinear fourth-order boundary value problems in which the nonlinearity may lack homogeneity. By introducing suitable control functions and applying cone expansion and cone compression, we prove three existence theorems. Our main results improve the existence result in [Z. L. Wei, Appl. Math. Comput. 153 (2004), 865-884] where the nonlinearity has a certain homogeneity.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-3-6, author = {Qingliu Yao}, title = {A class of singular fourth-order boundary value problems with nonhomogeneous nonlinearity}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {311-325}, zbl = {1300.34060}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-3-6} }
Qingliu Yao. A class of singular fourth-order boundary value problems with nonhomogeneous nonlinearity. Annales Polonici Mathematici, Tome 107 (2013) pp. 311-325. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-3-6/