Poisson driven stochastic differential equations on a separable Banach space are examined. Some sufficient conditions are given for the asymptotic stability of a Markov operator P corresponding to the change of distribution from jump to jump. We also give criteria for the continuous dependence of the invariant measure for P on the intensity of the Poisson process.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-3-4, author = {Jolanta Kazak}, title = {Piecewise-deterministic Markov processes}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {279-296}, zbl = {06223856}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-3-4} }
Jolanta Kazak. Piecewise-deterministic Markov processes. Annales Polonici Mathematici, Tome 107 (2013) pp. 279-296. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-3-4/