Fixed points of meromorphic functions and of their differences and shifts
Zong-Xuan Chen
Annales Polonici Mathematici, Tome 107 (2013), p. 153-163 / Harvested from The Polish Digital Mathematics Library

Let f(z) be a finite order transcendental meromorphic function such that λ(1/f(z)) < σ(f(z)), and let c ∈ ℂ∖0 be a constant such that f(z+c) ≢ f(z) + c. We mainly prove that maxτ(f(z)),τ(Δcf(z))=maxτ(f(z)),τ(f(z+c))=maxτ(Δcf(z)),τ(f(z+c))=σ(f(z)), where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and σ(g(z)) denotes the order of growth of g(z).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:280184
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-2-4,
     author = {Zong-Xuan Chen},
     title = {Fixed points of meromorphic functions and of their differences and shifts},
     journal = {Annales Polonici Mathematici},
     volume = {107},
     year = {2013},
     pages = {153-163},
     zbl = {1291.30195},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-2-4}
}
Zong-Xuan Chen. Fixed points of meromorphic functions and of their differences and shifts. Annales Polonici Mathematici, Tome 107 (2013) pp. 153-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-2-4/