Let f(z) be a finite order transcendental meromorphic function such that λ(1/f(z)) < σ(f(z)), and let c ∈ ℂ∖0 be a constant such that f(z+c) ≢ f(z) + c. We mainly prove that , where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and σ(g(z)) denotes the order of growth of g(z).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-2-4, author = {Zong-Xuan Chen}, title = {Fixed points of meromorphic functions and of their differences and shifts}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {153-163}, zbl = {1291.30195}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-2-4} }
Zong-Xuan Chen. Fixed points of meromorphic functions and of their differences and shifts. Annales Polonici Mathematici, Tome 107 (2013) pp. 153-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-2-4/