Multiplicity results for a class of fractional boundary value problems
Nemat Nyamoradi
Annales Polonici Mathematici, Tome 107 (2013), p. 59-73 / Harvested from The Polish Digital Mathematics Library

We prove the existence of at least three solutions to the following fractional boundary value problem: ⎧ -d/dt(1/20Dt-σ(u'(t))+1/2tDT-σ(u'(t)))-λβ(t)f(u(t))-μγ(t)g(u(t))=0, a.e. t ∈ [0, T], ⎨ ⎩ u (0) = u (T) = 0, where 0Dt-σ and tDT-σ are the left and right Riemann-Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454].

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:280907
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-5,
     author = {Nemat Nyamoradi},
     title = {Multiplicity results for a class of fractional boundary value problems},
     journal = {Annales Polonici Mathematici},
     volume = {107},
     year = {2013},
     pages = {59-73},
     zbl = {06176234},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-5}
}
Nemat Nyamoradi. Multiplicity results for a class of fractional boundary value problems. Annales Polonici Mathematici, Tome 107 (2013) pp. 59-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-5/