We prove the existence of at least three solutions to the following fractional boundary value problem: ⎧ , a.e. t ∈ [0, T], ⎨ ⎩ u (0) = u (T) = 0, where and are the left and right Riemann-Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-5, author = {Nemat Nyamoradi}, title = {Multiplicity results for a class of fractional boundary value problems}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {59-73}, zbl = {06176234}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-5} }
Nemat Nyamoradi. Multiplicity results for a class of fractional boundary value problems. Annales Polonici Mathematici, Tome 107 (2013) pp. 59-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-5/