Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator
Honghui Yin ; Mei Xu
Annales Polonici Mathematici, Tome 107 (2013), p. 47-58 / Harvested from The Polish Digital Mathematics Library

The existence of at least three weak solutions is established for a class of quasilinear elliptic equations involving the p(x)-biharmonic operator with Navier boundary value conditions. The proof is mainly based on a three critical points theorem due to B. Ricceri [Nonlinear Anal. 70 (2009), 3084-3089].

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:286661
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-4,
     author = {Honghui Yin and Mei Xu},
     title = {Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator},
     journal = {Annales Polonici Mathematici},
     volume = {107},
     year = {2013},
     pages = {47-58},
     zbl = {1288.35247},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-4}
}
Honghui Yin; Mei Xu. Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator. Annales Polonici Mathematici, Tome 107 (2013) pp. 47-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-4/