We give necessary and sufficient conditions for topological hyperbolicity of a homeomorphism of a metric space, restricted to a given compact invariant set. These conditions are related to the existence of an appropriate finite covering of this set and a corresponding cone-hyperbolic graph-directed iterated function system.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-2, author = {Marcin Mazur}, title = {On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {29-38}, zbl = {06176231}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-2} }
Marcin Mazur. On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces. Annales Polonici Mathematici, Tome 107 (2013) pp. 29-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap109-1-2/