It is shown that every proper Fréchet space with weak*-separable dual admits uncountably many inequivalent Fréchet topologies. This applies, in particular, to spaces of holomorphic functions, solving in the negative a problem of Jarnicki and Pflug. For this case an example with a short self-contained proof is added.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap108-3-1, author = {Dietmar Vogt}, title = {Non-natural topologies on spaces of holomorphic functions}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {215-217}, zbl = {1290.46001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap108-3-1} }
Dietmar Vogt. Non-natural topologies on spaces of holomorphic functions. Annales Polonici Mathematici, Tome 107 (2013) pp. 215-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap108-3-1/