Global existence of regular solutions to the Navier-Stokes equations for velocity and pressure coupled with the heat convection equation for temperature in a cylindrical pipe is shown. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First we prove long time existence of regular solutions in [kT,(k+1)T]. Having T sufficiently large and imposing some decay estimates on , we continue the local solutions step by step up to a global one.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap108-2-3, author = {Piotr Kacprzyk}, title = {On global regular solutions to the Navier-Stokes equations with heat convection}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {155-184}, zbl = {06146051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap108-2-3} }
Piotr Kacprzyk. On global regular solutions to the Navier-Stokes equations with heat convection. Annales Polonici Mathematici, Tome 107 (2013) pp. 155-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap108-2-3/