We consider an initial-boundary problem for a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures. Using Schauder type estimates and Campanato spaces, we prove the global existence of classical solutions for the problem in two space dimensions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-3-4, author = {Changchun Liu}, title = {Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {271-291}, zbl = {1263.35127}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-3-4} }
Changchun Liu. Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions. Annales Polonici Mathematici, Tome 107 (2013) pp. 271-291. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-3-4/