We consider an initial-boundary problem for a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures. Using Schauder type estimates and Campanato spaces, we prove the global existence of classical solutions for the problem in two space dimensions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-3-4,
author = {Changchun Liu},
title = {Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions},
journal = {Annales Polonici Mathematici},
volume = {107},
year = {2013},
pages = {271-291},
zbl = {1263.35127},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-3-4}
}
Changchun Liu. Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions. Annales Polonici Mathematici, Tome 107 (2013) pp. 271-291. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-3-4/