In 1984 L. Lempert showed that the Lempert function and the Carathéodory distance coincide on non-planar bounded strongly linearly convex domains with real-analytic boundaries. Following his paper, we present a slightly modified and more detailed version of the proof. Moreover, the Lempert Theorem is proved for non-planar bounded strongly linearly convex domains.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-2-5, author = {\L ukasz Kosi\'nski and Tomasz Warszawski}, title = {Lempert theorem for strongly linearly convex domains}, journal = {Annales Polonici Mathematici}, volume = {107}, year = {2013}, pages = {167-216}, zbl = {1268.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-2-5} }
Łukasz Kosiński; Tomasz Warszawski. Lempert theorem for strongly linearly convex domains. Annales Polonici Mathematici, Tome 107 (2013) pp. 167-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-2-5/