In 1984 L. Lempert showed that the Lempert function and the Carathéodory distance coincide on non-planar bounded strongly linearly convex domains with real-analytic boundaries. Following his paper, we present a slightly modified and more detailed version of the proof. Moreover, the Lempert Theorem is proved for non-planar bounded strongly linearly convex domains.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-2-5,
author = {\L ukasz Kosi\'nski and Tomasz Warszawski},
title = {Lempert theorem for strongly linearly convex domains},
journal = {Annales Polonici Mathematici},
volume = {107},
year = {2013},
pages = {167-216},
zbl = {1268.32004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-2-5}
}
Łukasz Kosiński; Tomasz Warszawski. Lempert theorem for strongly linearly convex domains. Annales Polonici Mathematici, Tome 107 (2013) pp. 167-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-2-5/