We consider a compact set K ⊂ ℝ in the form of the union of a sequence of segments. By means of nearly Chebyshev polynomials for K, the modulus of continuity of the Green functions is estimated. Markov’s constants of the corresponding set are evaluated.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-9, author = {Serkan Celik and Alexander Goncharov}, title = {Smoothness of the Green function for a special domain}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {113-126}, zbl = {1254.31003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-9} }
Serkan Celik; Alexander Goncharov. Smoothness of the Green function for a special domain. Annales Polonici Mathematici, Tome 105 (2012) pp. 113-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-9/