Smoothness of the Green function for a special domain
Serkan Celik ; Alexander Goncharov
Annales Polonici Mathematici, Tome 105 (2012), p. 113-126 / Harvested from The Polish Digital Mathematics Library

We consider a compact set K ⊂ ℝ in the form of the union of a sequence of segments. By means of nearly Chebyshev polynomials for K, the modulus of continuity of the Green functions gK is estimated. Markov’s constants of the corresponding set are evaluated.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280427
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-9,
     author = {Serkan Celik and Alexander Goncharov},
     title = {Smoothness of the Green function for a special domain},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {113-126},
     zbl = {1254.31003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-9}
}
Serkan Celik; Alexander Goncharov. Smoothness of the Green function for a special domain. Annales Polonici Mathematici, Tome 105 (2012) pp. 113-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-9/