Siciak’s extremal function via Bernstein and Markov constants for compact sets in N
Leokadia Bialas-Ciez
Annales Polonici Mathematici, Tome 105 (2012), p. 41-51 / Harvested from The Polish Digital Mathematics Library

The paper is concerned with the best constants in the Bernstein and Markov inequalities on a compact set EN. We give some basic properties of these constants and we prove that two extremal-like functions defined in terms of the Bernstein constants are plurisubharmonic and very close to the Siciak extremal function ΦE. Moreover, we show that one of these extremal-like functions is equal to ΦE if E is a nonpluripolar set with limnM(E)1/n=1 where M(E):=sup|||gradP|||E/||P||E, the supremum is taken over all polynomials P of N variables of total degree at most n and ||·||E is the uniform norm on E. The above condition is fulfilled e.g. for all regular (in the sense of the continuity of the pluricomplex Green function) compact sets in N.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:286610
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-4,
     author = {Leokadia Bialas-Ciez},
     title = {Siciak's extremal function via Bernstein and Markov constants for compact sets in $$\mathbb{C}$^{N}$
            },
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {41-51},
     zbl = {1254.32048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-4}
}
Leokadia Bialas-Ciez. Siciak’s extremal function via Bernstein and Markov constants for compact sets in $ℂ^{N}$
            . Annales Polonici Mathematici, Tome 105 (2012) pp. 41-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-4/