Hartogs type extension theorems on some domains in Kähler manifolds
Takeo Ohsawa
Annales Polonici Mathematici, Tome 105 (2012), p. 243-254 / Harvested from The Polish Digital Mathematics Library

Given a locally pseudoconvex bounded domain Ω, in a complex manifold M, the Hartogs type extension theorem is said to hold on Ω if there exists an arbitrarily large compact subset K of Ω such that every holomorphic function on Ω-K is extendible to a holomorphic function on Ω. It will be reported, based on still unpublished papers of the author, that the Hartogs type extension theorem holds in the following two cases: 1) M is Kähler and ∂Ω is C²-smooth and not Levi flat; 2) M is compact Kähler and ∂Ω is the support of a divisor whose normal bundle is nonflatly semipositive.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:281083
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-19,
     author = {Takeo Ohsawa},
     title = {Hartogs type extension theorems on some domains in K\"ahler manifolds},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {243-254},
     zbl = {1262.32013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-19}
}
Takeo Ohsawa. Hartogs type extension theorems on some domains in Kähler manifolds. Annales Polonici Mathematici, Tome 105 (2012) pp. 243-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-19/