On convergence sets of divergent power series
Buma L. Fridman ; Daowei Ma ; Tejinder S. Neelon
Annales Polonici Mathematici, Tome 105 (2012), p. 193-198 / Harvested from The Polish Digital Mathematics Library

A nonlinear generalization of convergence sets of formal power series, in the sense of Abhyankar-Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given a family y=φs(t,x)=sb(x)t+b(x)t²+ of analytic curves in ℂ × ℂⁿ passing through the origin, Convφ(f) of a formal power series f(y,t,x) ∈ ℂ[[y,t,x]] is defined to be the set of all s ∈ ℂ for which the power series f(φs(t,x),t,x) converges as a series in (t,x). We prove that for a subset E ⊂ ℂ there exists a divergent formal power series f(y,t,x) ∈ ℂ[[y,t,x]] such that E=Convφ(f) if and only if E is an Fσ set of zero capacity. This generalizes the results of P. Lelong and A. Sathaye for the linear case φs(t,x)=st.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280514
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-14,
     author = {Buma L. Fridman and Daowei Ma and Tejinder S. Neelon},
     title = {On convergence sets of divergent power series},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {193-198},
     zbl = {1254.32001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-14}
}
Buma L. Fridman; Daowei Ma; Tejinder S. Neelon. On convergence sets of divergent power series. Annales Polonici Mathematici, Tome 105 (2012) pp. 193-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-14/