A nonlinear generalization of convergence sets of formal power series, in the sense of Abhyankar-Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given a family of analytic curves in ℂ × ℂⁿ passing through the origin, of a formal power series f(y,t,x) ∈ ℂ[[y,t,x]] is defined to be the set of all s ∈ ℂ for which the power series converges as a series in (t,x). We prove that for a subset E ⊂ ℂ there exists a divergent formal power series f(y,t,x) ∈ ℂ[[y,t,x]] such that if and only if E is an set of zero capacity. This generalizes the results of P. Lelong and A. Sathaye for the linear case .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-14,
author = {Buma L. Fridman and Daowei Ma and Tejinder S. Neelon},
title = {On convergence sets of divergent power series},
journal = {Annales Polonici Mathematici},
volume = {105},
year = {2012},
pages = {193-198},
zbl = {1254.32001},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-14}
}
Buma L. Fridman; Daowei Ma; Tejinder S. Neelon. On convergence sets of divergent power series. Annales Polonici Mathematici, Tome 105 (2012) pp. 193-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-14/