Radially symmetric plurisubharmonic functions
Per Åhag ; Rafał Czyż ; Leif Persson
Annales Polonici Mathematici, Tome 105 (2012), p. 1-17 / Harvested from The Polish Digital Mathematics Library

In this note we consider radially symmetric plurisubharmonic functions and the complex Monge-Ampère operator. We prove among other things a complete characterization of unitary invariant measures for which there exists a solution of the complex Monge-Ampère equation in the set of radially symmetric plurisubharmonic functions. Furthermore, we prove in contrast to the general case that the complex Monge-Ampère operator is continuous on the set of radially symmetric plurisubharmonic functions. Finally we characterize radially symmetric plurisubharmonic functions among the subharmonic ones using merely the laplacian.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280579
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-1,
     author = {Per \AA hag and Rafa\l\ Czy\.z and Leif Persson},
     title = {Radially symmetric plurisubharmonic functions},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {1-17},
     zbl = {1266.32047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-1}
}
Per Åhag; Rafał Czyż; Leif Persson. Radially symmetric plurisubharmonic functions. Annales Polonici Mathematici, Tome 105 (2012) pp. 1-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap106-0-1/