The paper is dedicated to the global well-posedness of the barotropic compressible Navier-Stokes-Poisson system in the whole space with N ≥ 3. The global existence and uniqueness of the strong solution is shown in the framework of hybrid Besov spaces. The initial velocity has the same critical regularity index as for the incompressible homogeneous Navier-Stokes equations. The proof relies on a uniform estimate for a mixed hyperbolic/parabolic linear system with a convection term.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-6, author = {Zhensheng Gao and Zhong Tan}, title = {A global existence result for the compressible Navier-Stokes-Poisson equations in three and higher dimensions}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {179-198}, zbl = {1258.35055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-6} }
Zhensheng Gao; Zhong Tan. A global existence result for the compressible Navier-Stokes-Poisson equations in three and higher dimensions. Annales Polonici Mathematici, Tome 105 (2012) pp. 179-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-6/