Heights of squares of Littlewood polynomials and infinite series
Artūras Dubickas
Annales Polonici Mathematici, Tome 105 (2012), p. 145-153 / Harvested from The Polish Digital Mathematics Library

Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let Am be the mth coefficient of the square f(x)² of a unimodular series f(x)=i=0aixi, where all ai satisfy |ai|=1. We show that then limsupm|Am|/m1 and that there exist some infinite series with ±1 coefficients and an integer m(ε) such that |Am|<(2+ε)(mlogm) for each m ≥ m(ε).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280396
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-3,
     author = {Art\=uras Dubickas},
     title = {Heights of squares of Littlewood polynomials and infinite series},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {145-153},
     zbl = {1277.11099},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-3}
}
Artūras Dubickas. Heights of squares of Littlewood polynomials and infinite series. Annales Polonici Mathematici, Tome 105 (2012) pp. 145-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-3/