We consider the existence of positive solutions of the equation , where , p > 1, subject to some singular Sturm-Liouville boundary conditions. Using the Krasnosel’skiĭ fixed point theorem for operators on cones, we prove the existence of positive solutions under some structure conditions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-2, author = {Huijuan Song and Jingxue Yin and Rui Huang}, title = {Positive solutions for one-dimensional singular p-Laplacian boundary value problems}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {125-144}, zbl = {1267.34049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-2} }
Huijuan Song; Jingxue Yin; Rui Huang. Positive solutions for one-dimensional singular p-Laplacian boundary value problems. Annales Polonici Mathematici, Tome 105 (2012) pp. 125-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-2/