Positive solutions for one-dimensional singular p-Laplacian boundary value problems
Huijuan Song ; Jingxue Yin ; Rui Huang
Annales Polonici Mathematici, Tome 105 (2012), p. 125-144 / Harvested from The Polish Digital Mathematics Library

We consider the existence of positive solutions of the equation 1/λ(t)(λ(t)φp(x'(t)))'+μf(t,x(t),x'(t))=0, where φp(s)=|s|p-2s, p > 1, subject to some singular Sturm-Liouville boundary conditions. Using the Krasnosel’skiĭ fixed point theorem for operators on cones, we prove the existence of positive solutions under some structure conditions.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280294
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-2,
     author = {Huijuan Song and Jingxue Yin and Rui Huang},
     title = {Positive solutions for one-dimensional singular p-Laplacian boundary value problems},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {125-144},
     zbl = {1267.34049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-2}
}
Huijuan Song; Jingxue Yin; Rui Huang. Positive solutions for one-dimensional singular p-Laplacian boundary value problems. Annales Polonici Mathematici, Tome 105 (2012) pp. 125-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-2/