Under no Ambrosetti-Rabinowitz-type growth condition, we study the existence of infinitely many solutions of the p(x)-Laplacian equations by applying the variant fountain theorems due to Zou [Manuscripta Math. 104 (2001), 343-358].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-8, author = {Chao Ji and Fei Fang}, title = {Infinitely many solutions for the p(x)-Laplacian equations without (AR)-type growth condition}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {87-99}, zbl = {1262.35107}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-8} }
Chao Ji; Fei Fang. Infinitely many solutions for the p(x)-Laplacian equations without (AR)-type growth condition. Annales Polonici Mathematici, Tome 105 (2012) pp. 87-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-8/