Infinitely many solutions for the p(x)-Laplacian equations without (AR)-type growth condition
Chao Ji ; Fei Fang
Annales Polonici Mathematici, Tome 105 (2012), p. 87-99 / Harvested from The Polish Digital Mathematics Library

Under no Ambrosetti-Rabinowitz-type growth condition, we study the existence of infinitely many solutions of the p(x)-Laplacian equations by applying the variant fountain theorems due to Zou [Manuscripta Math. 104 (2001), 343-358].

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280996
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-8,
     author = {Chao Ji and Fei Fang},
     title = {Infinitely many solutions for the p(x)-Laplacian equations without (AR)-type growth condition},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {87-99},
     zbl = {1262.35107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-8}
}
Chao Ji; Fei Fang. Infinitely many solutions for the p(x)-Laplacian equations without (AR)-type growth condition. Annales Polonici Mathematici, Tome 105 (2012) pp. 87-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-8/