A note on the plane Jacobian conjecture
Nguyen Van Chau
Annales Polonici Mathematici, Tome 105 (2012), p. 13-19 / Harvested from The Polish Digital Mathematics Library

It is shown that every polynomial function P:ℂ² → ℂ with irreducible fibres of the same genus must be a coordinate. Consequently, there do not exist counterexamples F = (P,Q) to the Jacobian conjecture such that all fibres of P are irreducible curves with the same genus.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280882
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-2,
     author = {Nguyen Van Chau},
     title = {A note on the plane Jacobian conjecture},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {13-19},
     zbl = {1256.14068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-2}
}
Nguyen Van Chau. A note on the plane Jacobian conjecture. Annales Polonici Mathematici, Tome 105 (2012) pp. 13-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-2/