It is shown that every polynomial function P:ℂ² → ℂ with irreducible fibres of the same genus must be a coordinate. Consequently, there do not exist counterexamples F = (P,Q) to the Jacobian conjecture such that all fibres of P are irreducible curves with the same genus.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-2, author = {Nguyen Van Chau}, title = {A note on the plane Jacobian conjecture}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {13-19}, zbl = {1256.14068}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-2} }
Nguyen Van Chau. A note on the plane Jacobian conjecture. Annales Polonici Mathematici, Tome 105 (2012) pp. 13-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-1-2/