Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions
Honghui Yin ; Zuodong Yang
Annales Polonici Mathematici, Tome 105 (2012), p. 293-308 / Harvested from The Polish Digital Mathematics Library

Our main purpose is to establish the existence of a positive solution of the system ⎧-p(x)u=F(x,u,v), x ∈ Ω, ⎨-q(x)v=H(x,u,v), x ∈ Ω, ⎩u = v = 0, x ∈ ∂Ω, where ΩN is a bounded domain with C² boundary, F(x,u,v)=λp(x)[g(x)a(u)+f(v)], H(x,u,v)=λq(x)[g(x)b(v)+h(u)], λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and -p(x)u=-div(|u|p(x)-2u) is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280185
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-3-6,
     author = {Honghui Yin and Zuodong Yang},
     title = {Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {293-308},
     zbl = {1258.35091},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-3-6}
}
Honghui Yin; Zuodong Yang. Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions. Annales Polonici Mathematici, Tome 105 (2012) pp. 293-308. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-3-6/