Using a three critical points theorem and variational methods, we study the existence of at least three weak solutions of the Navier problem ⎧ in Ω, ⎨ ⎩u = Δu = 0 on ∂Ω, where (N ≥ 1) is a non-empty bounded open set with a sufficiently smooth boundary ∂Ω, λ > 0, μ > 0 and f,g: Ω × ℝ → ℝ are two L¹-Carathéodory functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-1-5, author = {Lin Li and Shapour Heidarkhani}, title = {Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {71-80}, zbl = {1248.35072}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-1-5} }
Lin Li; Shapour Heidarkhani. Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation. Annales Polonici Mathematici, Tome 105 (2012) pp. 71-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-1-5/