Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation
Lin Li ; Shapour Heidarkhani
Annales Polonici Mathematici, Tome 105 (2012), p. 71-80 / Harvested from The Polish Digital Mathematics Library

Using a three critical points theorem and variational methods, we study the existence of at least three weak solutions of the Navier problem ⎧Δ(|Δu|p2Δu)div(|u|p2u)=λf(x,u)+μg(x,u) in Ω, ⎨ ⎩u = Δu = 0 on ∂Ω, where ΩN (N ≥ 1) is a non-empty bounded open set with a sufficiently smooth boundary ∂Ω, λ > 0, μ > 0 and f,g: Ω × ℝ → ℝ are two L¹-Carathéodory functions.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280859
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-1-5,
     author = {Lin Li and Shapour Heidarkhani},
     title = {Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {71-80},
     zbl = {1248.35072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-1-5}
}
Lin Li; Shapour Heidarkhani. Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation. Annales Polonici Mathematici, Tome 105 (2012) pp. 71-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-1-5/