We characterize composition operators on spaces of real analytic functions which are open onto their images. We give an example of a semiproper map φ such that the associated composition operator is not open onto its image.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-2-8, author = {Pawe\l\ Doma\'nski and Micha\l\ Goli\'nski and Michael Langenbruch}, title = {A note on composition operators on spaces of real analytic functions}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {209-216}, zbl = {1272.47038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-2-8} }
Paweł Domański; Michał Goliński; Michael Langenbruch. A note on composition operators on spaces of real analytic functions. Annales Polonici Mathematici, Tome 105 (2012) pp. 209-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-2-8/