We prove that every isotropic Berwald metric of scalar flag curvature is a Randers metric. We study the relation between an isotropic Berwald metric and a Randers metric which are pointwise projectively related. We show that on constant isotropic Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then we prove that every complete generalized Landsberg manifold with isotropic Berwald curvature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic Berwald metrics.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-2-1, author = {Akbar Tayebi and Behzad Najafi}, title = {On isotropic Berwald metrics}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {109-121}, zbl = {1253.53021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-2-1} }
Akbar Tayebi; Behzad Najafi. On isotropic Berwald metrics. Annales Polonici Mathematici, Tome 105 (2012) pp. 109-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-2-1/