Landau's theorem for p-harmonic mappings in several variables
Sh. Chen ; S. Ponnusamy ; X. Wang
Annales Polonici Mathematici, Tome 105 (2012), p. 67-87 / Harvested from The Polish Digital Mathematics Library

A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation Δpf=0, where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function f:Ωm is said to be p-harmonic in Ω if each component function fi (i∈ 1,...,m) of f=(f,...,fm) is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings f from the unit ball ⁿ into ℂⁿ with the form f(z)=(k,...,k)=(1,...,1)(p,...,p)|z|2(k-1)|z|2(k-1)Gp-k+1,...,p-k+1(z), where each Gp-k+1,...,p-k+1 is harmonic in ⁿ for ki1,...,p and i ∈ 1,. .., n.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280556
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-6,
     author = {Sh. Chen and S. Ponnusamy and X. Wang},
     title = {Landau's theorem for p-harmonic mappings in several variables},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {67-87},
     zbl = {1238.30016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-6}
}
Sh. Chen; S. Ponnusamy; X. Wang. Landau's theorem for p-harmonic mappings in several variables. Annales Polonici Mathematici, Tome 105 (2012) pp. 67-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-6/