Compactness of composition operators acting on weighted Bergman-Orlicz spaces
Ajay K. Sharma ; S. Ueki
Annales Polonici Mathematici, Tome 105 (2012), p. 1-13 / Harvested from The Polish Digital Mathematics Library

We characterize compact composition operators acting on weighted Bergman-Orlicz spaces αψ=fH():ψ(|f(z)|)dAα(z)<, where α > -1 and ψ is a strictly increasing, subadditive convex function defined on [0,∞) and satisfying ψ(0) = 0, the growth condition limtψ(t)/t= and the Δ₂-condition. In fact, we prove that Cφ is compact on αψ if and only if it is compact on the weighted Bergman space ²α.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:280283
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1,
     author = {Ajay K. Sharma and S. Ueki},
     title = {Compactness of composition operators acting on weighted Bergman-Orlicz spaces},
     journal = {Annales Polonici Mathematici},
     volume = {105},
     year = {2012},
     pages = {1-13},
     zbl = {1258.47041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1}
}
Ajay K. Sharma; S. Ueki. Compactness of composition operators acting on weighted Bergman-Orlicz spaces. Annales Polonici Mathematici, Tome 105 (2012) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1/