We characterize compact composition operators acting on weighted Bergman-Orlicz spaces , where α > -1 and ψ is a strictly increasing, subadditive convex function defined on [0,∞) and satisfying ψ(0) = 0, the growth condition and the Δ₂-condition. In fact, we prove that is compact on if and only if it is compact on the weighted Bergman space .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1,
author = {Ajay K. Sharma and S. Ueki},
title = {Compactness of composition operators acting on weighted Bergman-Orlicz spaces},
journal = {Annales Polonici Mathematici},
volume = {105},
year = {2012},
pages = {1-13},
zbl = {1258.47041},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1}
}
Ajay K. Sharma; S. Ueki. Compactness of composition operators acting on weighted Bergman-Orlicz spaces. Annales Polonici Mathematici, Tome 105 (2012) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1/