We characterize compact composition operators acting on weighted Bergman-Orlicz spaces , where α > -1 and ψ is a strictly increasing, subadditive convex function defined on [0,∞) and satisfying ψ(0) = 0, the growth condition and the Δ₂-condition. In fact, we prove that is compact on if and only if it is compact on the weighted Bergman space .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1, author = {Ajay K. Sharma and S. Ueki}, title = {Compactness of composition operators acting on weighted Bergman-Orlicz spaces}, journal = {Annales Polonici Mathematici}, volume = {105}, year = {2012}, pages = {1-13}, zbl = {1258.47041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1} }
Ajay K. Sharma; S. Ueki. Compactness of composition operators acting on weighted Bergman-Orlicz spaces. Annales Polonici Mathematici, Tome 105 (2012) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap103-1-1/