The analysis of blow-up solutions to a semilinear parabolic system with weighted localized terms
Haihua Lu ; Feng Wang ; Qiaoyun Jiang
Annales Polonici Mathematici, Tome 101 (2011), p. 187-203 / Harvested from The Polish Digital Mathematics Library

This paper deals with blow-up properties of solutions to a semilinear parabolic system with weighted localized terms, subject to the homogeneous Dirichlet boundary conditions. We investigate the influence of the three factors: localized sources up(x,t), vⁿ(x₀,t), local sources um(x,t), vq(x,t), and weight functions a(x),b(x), on the asymptotic behavior of solutions. We obtain the uniform blow-up profiles not only for the cases m,q ≤ 1 or m,q > 1, but also for m > 1 q < 1 or m < 1 q > 1.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280213
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-2-6,
     author = {Haihua Lu and Feng Wang and Qiaoyun Jiang},
     title = {The analysis of blow-up solutions to a semilinear parabolic system with weighted localized terms},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {187-203},
     zbl = {1227.35092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-2-6}
}
Haihua Lu; Feng Wang; Qiaoyun Jiang. The analysis of blow-up solutions to a semilinear parabolic system with weighted localized terms. Annales Polonici Mathematici, Tome 101 (2011) pp. 187-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-2-6/