Using the asymptotic a priori estimate method, we prove the existence of a pullback -attractor for a reaction-diffusion equation with an inverse-square potential in a bounded domain of (N ≥ 3), with the nonlinearity of polynomial type and a suitable exponential growth of the external force. Then under some additional conditions, we show that the pullback -attractor has a finite fractal dimension and is upper semicontinuous with respect to the parameter in the potential.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-2-5,
author = {Cung The Anh and Ta Thi Hong Yen},
title = {Finite-dimensional pullback attractors for parabolic equations with Hardy type potentials},
journal = {Annales Polonici Mathematici},
volume = {101},
year = {2011},
pages = {161-186},
zbl = {1227.35078},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-2-5}
}
Cung The Anh; Ta Thi Hong Yen. Finite-dimensional pullback attractors for parabolic equations with Hardy type potentials. Annales Polonici Mathematici, Tome 101 (2011) pp. 161-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-2-5/