Let ℱ be a family of meromorphic functions defined in a domain D, let ψ (≢ 0, ∞) be a meromorphic function in D, and k be a positive integer. If, for every f ∈ ℱ and z ∈ D, (1) f≠ 0, ; (2) all zeros of have multiplicities at least (k+2)/k; (3) all poles of ψ have multiplicities at most k, then ℱ is normal in D.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-9,
author = {Yan Xu and Jianming Chang},
title = {Normality criteria and multiple values II},
journal = {Annales Polonici Mathematici},
volume = {101},
year = {2011},
pages = {91-99},
zbl = {1251.30039},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-9}
}
Yan Xu; Jianming Chang. Normality criteria and multiple values II. Annales Polonici Mathematici, Tome 101 (2011) pp. 91-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-9/