A criterion for pure unrectifiability of sets (via universal vector bundle)
Silvano Delladio
Annales Polonici Mathematici, Tome 101 (2011), p. 73-78 / Harvested from The Polish Digital Mathematics Library

Let m,n be positive integers such that m < n and let G(n,m) be the Grassmann manifold of all m-dimensional subspaces of ℝⁿ. For V ∈ G(n,m) let πV denote the orthogonal projection from ℝⁿ onto V. The following characterization of purely unrectifiable sets holds. Let A be an m-measurable subset of ℝⁿ with m(A)<. Then A is purely m-unrectifiable if and only if there exists a null subset Z of the universal bundle (V,v)|VG(n,m),vV such that, for all P ∈ A, one has m(n-m)(VG(n,m)|(V,πV(P))Z)>0. One can replace “for all P ∈ A” by “for m-a.e. P ∈ A”.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280880
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-6,
     author = {Silvano Delladio},
     title = {A criterion for pure unrectifiability of sets (via universal vector bundle)},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {73-78},
     zbl = {1234.28007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-6}
}
Silvano Delladio. A criterion for pure unrectifiability of sets (via universal vector bundle). Annales Polonici Mathematici, Tome 101 (2011) pp. 73-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-6/