Let m,n be positive integers such that m < n and let G(n,m) be the Grassmann manifold of all m-dimensional subspaces of ℝⁿ. For V ∈ G(n,m) let denote the orthogonal projection from ℝⁿ onto V. The following characterization of purely unrectifiable sets holds. Let A be an -measurable subset of ℝⁿ with . Then A is purely m-unrectifiable if and only if there exists a null subset Z of the universal bundle such that, for all P ∈ A, one has . One can replace “for all P ∈ A” by “for -a.e. P ∈ A”.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-6, author = {Silvano Delladio}, title = {A criterion for pure unrectifiability of sets (via universal vector bundle)}, journal = {Annales Polonici Mathematici}, volume = {101}, year = {2011}, pages = {73-78}, zbl = {1234.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-6} }
Silvano Delladio. A criterion for pure unrectifiability of sets (via universal vector bundle). Annales Polonici Mathematici, Tome 101 (2011) pp. 73-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-6/