Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ , x ∈ Ω, ⎨ , x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and (i = 1,2) are sign-changing functions, where , , and denotes the p-Laplace operator. We use variational methods.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-5, author = {Honghui Yin and Zuodong Yang}, title = {Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions}, journal = {Annales Polonici Mathematici}, volume = {101}, year = {2011}, pages = {51-71}, zbl = {1229.35066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-5} }
Honghui Yin; Zuodong Yang. Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions. Annales Polonici Mathematici, Tome 101 (2011) pp. 51-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-5/