Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ , x ∈ Ω, ⎨ , x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and (i = 1,2) are sign-changing functions, where , , and denotes the p-Laplace operator. We use variational methods.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-5,
author = {Honghui Yin and Zuodong Yang},
title = {Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions},
journal = {Annales Polonici Mathematici},
volume = {101},
year = {2011},
pages = {51-71},
zbl = {1229.35066},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-5}
}
Honghui Yin; Zuodong Yang. Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions. Annales Polonici Mathematici, Tome 101 (2011) pp. 51-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-5/