Positive solutions and eigenvalue intervals of a singular third-order boundary value problem
Qingliu Yao
Annales Polonici Mathematici, Tome 101 (2011), p. 25-37 / Harvested from The Polish Digital Mathematics Library

This paper studies positive solutions and eigenvalue intervals of a nonlinear third-order two-point boundary value problem. The nonlinear term is allowed to be singular with respect to both the time and space variables. By constructing a proper cone and applying the Guo-Krasnosel'skii fixed point theorem, the eigenvalue intervals for which there exist one, two, three or infinitely many positive solutions are obtained.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280694
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-3,
     author = {Qingliu Yao},
     title = {Positive solutions and eigenvalue intervals of a singular third-order boundary value problem},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {25-37},
     zbl = {1234.34021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-3}
}
Qingliu Yao. Positive solutions and eigenvalue intervals of a singular third-order boundary value problem. Annales Polonici Mathematici, Tome 101 (2011) pp. 25-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-3/