This paper studies positive solutions and eigenvalue intervals of a nonlinear third-order two-point boundary value problem. The nonlinear term is allowed to be singular with respect to both the time and space variables. By constructing a proper cone and applying the Guo-Krasnosel'skii fixed point theorem, the eigenvalue intervals for which there exist one, two, three or infinitely many positive solutions are obtained.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-3, author = {Qingliu Yao}, title = {Positive solutions and eigenvalue intervals of a singular third-order boundary value problem}, journal = {Annales Polonici Mathematici}, volume = {101}, year = {2011}, pages = {25-37}, zbl = {1234.34021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-3} }
Qingliu Yao. Positive solutions and eigenvalue intervals of a singular third-order boundary value problem. Annales Polonici Mathematici, Tome 101 (2011) pp. 25-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-3/