Quasi-homogeneous linear systems on ℙ² with base points of multiplicity 7, 8, 9, 10
Marcin Dumnicki
Annales Polonici Mathematici, Tome 101 (2011), p. 277-300 / Harvested from The Polish Digital Mathematics Library

We prove that the Segre-Gimigliano-Harbourne-Hirschowitz conjecture holds for quasi-homogeneous linear systems on ℙ² for m = 7, 8, 9, 10, i.e. systems of curves of a given degree passing through points in general position with multiplicities at least m,...,m,m₀, where m = 7, 8, 9, 10, m₀ is arbitrary.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280466
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-3-5,
     author = {Marcin Dumnicki},
     title = {Quasi-homogeneous linear systems on P2 with base points of multiplicity 7, 8, 9, 10},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {277-300},
     zbl = {1219.14042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-3-5}
}
Marcin Dumnicki. Quasi-homogeneous linear systems on ℙ² with base points of multiplicity 7, 8, 9, 10. Annales Polonici Mathematici, Tome 101 (2011) pp. 277-300. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-3-5/