On some noetherian rings of C germs on a real closed field
Abdelhafed Elkhadiri
Annales Polonici Mathematici, Tome 101 (2011), p. 261-275 / Harvested from The Polish Digital Mathematics Library

Let R be a real closed field, and denote by R,n the ring of germs, at the origin of Rⁿ, of C functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring R,nR,n with some natural properties. We prove that, for each n ∈ ℕ, R,n is a noetherian ring and if R = ℝ (the field of real numbers), then ,n=, where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring R,n.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:280385
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-3-4,
     author = {Abdelhafed Elkhadiri},
     title = {On some noetherian rings of $C^{$\infty$}$ germs on a real closed field},
     journal = {Annales Polonici Mathematici},
     volume = {101},
     year = {2011},
     pages = {261-275},
     zbl = {1226.32005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-3-4}
}
Abdelhafed Elkhadiri. On some noetherian rings of $C^{∞}$ germs on a real closed field. Annales Polonici Mathematici, Tome 101 (2011) pp. 261-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap100-3-4/